Interaction of antithrombin III with bovine aortic segments. Role of heparin in binding and enhanced anticoagulant activity.
نویسندگان
چکیده
Bovine antithrombin III (AT III) interaction with the luminal surface of bovine aortic segments with a continuous layer of endothelium was examined. Incubation of 125I-AT III with vessel segments, previously washed free of endogenous AT III, demonstrated specific, time-dependent binding to the protease inhibitor to the endothelium. Half-maximal binding was observed at an added AT III concentration of 14 nM. Binding of 125I-AT III to the vessel wall was reversible (50% dissociated in 4 min), and addition of either heparin or Factor Xa accelerated displacement of 125I-AT III from the vessel segment. Dissociation of 125I-AT III from the vessel segment in the presence of factor Xa coincided with the formation of a Factor Xa-125I-AT III complex. Inactivation of Factor IXa and Factor Xa by AT III was facilitated in the presence of vessel segments. Pretreatment of vessel segments with highly purified Flavobacterium heparinase precluded the vessel-dependent augmentation of AT III anticoagulant activity as well as specific binding of 125I-AT III to the vessel endothelium. In contrast, pretreatment of the vessel segments with chrondroitinases (ABC or AC) had no detectable effect on 125I-AT III binding or on AT III anticoagulant activity. AT III binding to vessel segments was competitively inhibited by increasing concentration of platelet factor 4. Binding of the protease inhibitor to vessel segments was inhibited by chemical modification of AT III lysyl or tryptophan residues. These AT III derivatives retained progressive inhibitory activity. These data suggest that heparin-like molecules are present on the aortic vessel wall and mediate binding of AT III to the vessel surface, as well as enhancing the anticoagulant activity of AT III at these sites.
منابع مشابه
Histidine-rich glycoprotein does not interfere with interactions between antithrombin III and heparin-like compounds on vascular endothelial cells.
The role of histidine-rich glycoprotein in controlling heparin-like compounds on the endothelial cell surface is still unclear. The effects of this heparin-neutralizing protein on the interaction between antithrombin III and cultured porcine aortic endothelial cells were examined. Displacement of 125I-labeled antithrombin III specifically bound to endothelial cells by unlabeled histidine-rich g...
متن کاملEnzymatic Generation of Highly Anticoagulant Bovine Intestinal Heparin.
Unlike USP porcine heparin, bovine intestinal heparin (BIH) has a low anticoagulant activity. Treatment with 6-OST-1, -3, and/or 3-OST-1 afforded two remodeled heparins that met USP heparin activity and Mw specifications. We explored the pharmacodynamics and pharmacokinetics in a rabbit model. We conclude that a modest increase in the content of 3-O-sulfo groups in BIH increases the number of a...
متن کاملCloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan.
Cloned bovine aortic endothelial cells were cultured with [35S]Na2SO4 and proteolyzed extensively with papain. Radiolabeled heparan sulfate was isolated by DEAE-Sephacel chromatography. The mucopolysaccharide was then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate, which bound tightly to the protease inhibitor, represented 0.84% of th...
متن کاملStructure of the antithrombin-binding site in heparin.
Heparin preparations from pig intestinal mucosa and from bovine lung were separated by chromatography on antithrombin-Sepharose into a high-affinity fraction (with high anticoagulant activity) and a low-affinity fraction (with low anticoagulant). Antithrombin-binding heparin fragments (12-16 monosaccharide units) were prepared, either by digesting a high-affinity heparin-antithrombin complex wi...
متن کاملEndothelial binding sites for heparin. Specificity and role in heparin neutralization.
The specificity of endothelial binding sites for heparin was investigated with heparin fractions and fragments differing in their Mr, charge density and affinity for antithrombin III, as well as with heparinoids and other anionic polyelectrolytes (polystyrene sulphonates). The affinity for endothelial cells was estimated by determining I50 values in competition experiments with 125I-heparin. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 75 1 شماره
صفحات -
تاریخ انتشار 1985